Mathematics

# In figure, if $\angle BOC=7x+20^o$ and $\angle COA=3x$, then find the value of $x$ for which $AOB$ becomes a straight line.

$16^o$

##### SOLUTION
$\angle BOC=7x+20^o and \angle COA=3x$
For AOB becomes a straight line, $\angle AOB = 180^0$
$=> \angle BOC+ \angle COA = 180^0$
$=> 7x+20^o + 3x = 180^0$
$=> 10x = 160^0$
$=> x = 16^0$

You're just one step away

Create your Digital Resume For FREE on your name's sub domain "yourname.wcard.io". Register Here!

Single Correct Medium Published on 09th 09, 2020
Questions 120418
Subjects 10
Chapters 88
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
In figure, $\displaystyle \angle POR={ a }^{ o }$ and $\displaystyle \angle QOR={ b }^{ o }$. If $\displaystyle { a }^{ o }-{ b }^{ o }={ 60}^{ o }$. Find angle $\displaystyle { a }^{ o }$ and $\displaystyle { b }^{ o }$.
• A. $\displaystyle \angle a={ 70 }^{ o },\angle b={ 110 }^{ o }$
• B. $\displaystyle \angle a={ 90 }^{ o },\angle b={ 90 }^{ o }$
• C. $\displaystyle \angle a={ 60 }^{ o },\angle b={ 120 }^{ o }$
• D. $\displaystyle \angle a={ 120 }^{ o },\angle b={ 60 }^{ o }$

Asked in: Mathematics - Lines and Angles

1 Verified Answer | Published on 23rd 09, 2020

Q2 Single Correct Medium
In. triangle ABC,$\angle A$ + $\angle B$ = 144 and$\angle A$ + $\angle C$ = 124.
Calculate smallest angle of the triangle.
• A. $56^o$
• B. $46^o$
• C. none of these
• D. $36^o$

Asked in: Mathematics - Lines and Angles

1 Verified Answer | Published on 09th 09, 2020

Q3 Subjective Hard
If $PQ$ and $RS$ intersect at point $T$, such that $\angle{PRT}={40}^{\circ}$, $\angle{RPT}={95}^{\circ}$ and $\angle{TSQ}={75}^{\circ}$.Find $\angle{SQT}$

Asked in: Mathematics - Lines and Angles

1 Verified Answer | Published on 09th 09, 2020

Q4 One Word Medium
Fill in the blank.
The sum of the measure of supplementary angle is ______

Asked in: Mathematics - Lines and Angles

1 Verified Answer | Published on 09th 09, 2020

Q5 Subjective Medium
Classify the angles whose magnitudes are given below:
$178^{o}$

Asked in: Mathematics - Lines and Angles

1 Verified Answer | Published on 09th 09, 2020